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An Analytical Method for Rolling Contact of Articular Cartilages
in Diarthrodial Joint

Jianguo Wu

School of Life Science and Biomedical Engineering, Tongji University, Shanghai, China

Abstract- An analytical method is presented to investigate
the stresses and strains in the cartilage layers of diarthrodial
joint under rolling contact. Each cartilage layer in contact is
assumed to be biphasic, composed of a linear elastic solid phase
and a Newtonian viscous fluid, whereas the subchondral bone
is simplified as a rigid body. The contact range of two cartilage
layers is discretized, where the surface tractions are piecewise
given. A Galerkin-penalty method is applied to form the finite
element formulation for the cartilage layers. The surface
tractions, stresses and strains in the cartilage layers are then
obtained for each time step with a numerical procedure of
rolling contact. Results show that the interstitial fluid plays a
fundamental role in the distributions of the stresses and strains
in the cartilage. The normal solid stress reaches its maximum
on the cartilage-subchondral bone interface. The coefficient of
friction at the contact surface has a great effect on the
tangential traction while it has little effect on the normal
traction. The difference of rolling velocity between the two
cartilage layers has an increasing effect on the tangential
traction as the coefficient of friction increases.

Keywords- Rolling contact, Articular cartilage, Diarthrodial
joint.

[. INTRODUCTION

The function of diarthrodial joint is to transmit loads and
allow motion between the bones of the musculoskeletal
system. It is considered that the mechanical failure of
articular cartilage in diarthrodial joint, such as keen joint, is
the direct cause of osteoarthritis. A variety of theoretical
models have been developed for estimating the contact
pressure or the stress distribution in loaded articular
cartilage [1]~[3]. However, it is necessary to make further
research considering various factors, including the friction
of two cartilage layers under rolling contact, for overall
understanding of the mechanism of degeneration.

In this paper an analytical model of two cartilage layers
under rolling contact, which is based on the KLM linear
biphasic theory, is developed. A piecewise discretization
method together with a FEM procedure is adopted to obtain
the mechanical response of articular cartilage.

II. METHODS

A. Contact model

Figure 1 shows the contact configuration of the two
cylindrical biphasic cartilage layers of radii R, thickness b,
and surface velocities V; (i=1, 2) with a contact width 2a and
a normal approach d under a normal load per unit length P
along the longitudinal axis of the cylinder. The subchondral
bone of each layer is assumed impermeable and rigid in this
analysis. The inertial force in each layer is ignored as it is
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sufficiently small compared to the contact pressure. Each
cylindrical layer can be approximated by a flat layer bonded
to a rigid half-plane if the contact width is small compared
to the cylinders' radii.

Fig. 1. Contact model of two cartilage layers

B. Governing equations
According to the linear biphasic theory [4], the solid and

fluid stresses, 0° and @’, are related to the interstitial fluid
pressure p and the effective solid stress 0° by

o' =-¢'pl+0° (1)

o/ =4/ pl (1b)
where ¢ is the volume fraction (¢* + ¢/ = 1), A and u are the
Lame constant of the solid phase, which together define the
aggregate modulus H, =A + 2u. The effective stress 0° is
relate to the solid strain € in the form:

o’ =Atr(e)l +2ue 2)
The solid and fluid quasistatic momentum equations, and the
continuity equation are given by

0o’ +K(v/ =v*)=0 (3a)
Oo/ -K(v/ -v*)=0 (3b)
Og'v' +¢'v/)=0 (3¢)

where v is the phase velocity, and the drag constant K is
related to the tissure permeability k by K =(¢/)*/ k.

C. Boundary conditions

Define the relative fluid flux w =¢/(v- v*) and the solid
displacement u. Since the subchondral bone of each layer is
assumed impermeable and rigid in this study, the cartilage-
bone boundary conditions are as follows:

At y=b (), =@,), =(w,),; =0, ~©<x<o0 (4
At the contact interface, the boundary conditions stipulate
continuity of the fluid pressure, effective traction normal
displacements and normal fluid flux within the contact
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region. Thus:

At y=0, =p,+(0},), =,(x): (03,), =1.(x) (5a)
2 (u,), =d +ex/R-x*/2R> [x|<a (5b)
i (w,), =0 (5¢)

i=1
where #,(x), £,(x) are the normal and tangential traction at the
contact interface respectively, e is an offset between the
contact center and the line which connects the centers of the
two cylinders , and R is the equivalent radius of curvature,
R\R,/(R\+R,). Outside of the contact region the surface
tractions reduce to zero, so that:

At y=0, p,=0, (%), =0, (0°), =0, [x|>a (6)
Finally, the total load per unit length P applied across the

surface must be balanced by the normal traction at the
contact interface,

P= j'ty (x)dx (7

In a steady-state of rolling contact, the surface velocities
f; (=1, 2) of the layers 1 and 2 in the contact region can be
written as follows:
f=VHE)]s W<a ®)
The contact region is divided into two parts: one is
called the stick zone where two contacting layers have the
same surface velocity, and another is called the micro-slip
zone where the two layer surfaces slid each other. At the
stick zone, we have from (8):
P2 e, e, ©)
V, 1+(&),
In the micro-slip zone, the Coulomb's law is assumed to
satisfy and then

t.(x) =sgn(f; = /vt (x) (10)

where U is the coefficient of friction between two layer
surfaces.

D. Solution

The contact region (-a, a) shown in Fig.1 is equally
divided into 2§ elements and the distributions of the normal
and tangential traction, #(x), £,(x), in the contact region are
approximated by a series of straight lines defined by ¢ and
1" at the points of intersection, 7, as shown in Fig.2. These
approximations are equivalent to that z,(x) and 7 (x) are each
represented by 2S-1 overlapping triangle elements with
equal base of width 2a/S. The tractions represented by the
nth triangle element in the local coordinate system (x*, y*)
originated at the point » are given in the form:

7.(x*) =t (1= S/alx*) (11a)

T(x*) =t (1= S/alx*) (11b)

A Galerkin-penalty finite element method [5] is then
employed to solve the displacements and stresses of each

layer under the tractions shown in Fig. 2. In this approach, a
weighted residual statement is constructed for a solid phase

and for the fluid phase, and the penalty method is used to
introduce the continuity equation. The governing first order

y
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tv( )
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Fig. 2. Piecewise discretization of contact region

coupled differential equations for the finite element
assembled system are in the form:

Cv + Ku=F (12)
where C, K and F are the conductivity matrix, stiffness
matrix and force vector, respectively. We solve (11) using
finite difference techniques. Considering times ¢, and ¢,
separated by a time increment Atz = ¢, - ¢, and using the
Generalized Trapezoidal Family of first order difference
rules, We obtain:

[C+ @ AK IV, = F,,, - K [u,+Ar(1-0)v,],
0<w<1 (13)
Equation (12) is a velocity based formulation and can be
solved recursively for v,,,,; once a set of boundary conditions
and initial conditions have been given. Then the nodal
displacements u,,,, can be computed by

u,,=u, + At[(1-0)v,+0v,,] (14)
We can obtain the displacements of the contact surface
in each layer under the nth traction element in which ¢ and
t,"” (n=-S+1, ---, S-1) are put to unit in (11a) and (11b) by
using (13) and (14). According to (9), (10) and the above
results, we can solve the unknowns ¢ and ¢, (n=-S+1, ---,
S-1) when the contact half-width @ or normal approach d,
surface velocity V; (i=1, 2) and so on are given. Then
solving (13) and (14) again, we can -calculate the
displacements u and phase velocities v due to the whole
surface tractions shown in Fig.2. The interstitial fluid

pressure in the cartilage layers can be obtained by

p=-BO@V +¢'V)) (15)
where f3 is the penalty parameter which is selected large
enough to enforce the continuity constraint condition, (3c),
but not so large that the governing matrix equations become

ill conditioned. Finally, we obtain @*, ¢’ and @¢ according to
(1a), (1b) and (2).

m

III. RESULTS AND CONCLUSIONS

In the present results, a=2mm, b,=b,=2mm, R,=8mm,
R,=6mm, A=0.05MPa, 1;=0.25MPa, ¢'=0.2, $'=0.8, k=4.0 x
10"°m*/Ns.

Figure 3 shows the contact tractions for two values of
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the coefficient of friction v (0.001 and 0.3). It is seen that U
has a great effect on the tangential traction while it has little
effect on the normal traction.

Figure 4 shows the distribution of the normal stress for
y/b,=0.05, 0.55 and 0.95 in layer 1. It is seen that the normal
stress reaches its maximum on the cartilage-subchondral
bone interface.
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Fig.3 Contact tractions #(x) and ,(x) for v=0.001 and 0.3 (V,/V,=0.95)
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Fig. 4. Effective solid Stress Uf,y for y/b,=0.05, 0.55 and 0.95
in layer 1(V,/V,=0.95)
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Fig. 5. Interstitial fluid pressure p for y/5,=0.05, 0.55 and 0.95
in layer 1(V,/V,=0.95)

Figure 5 shows the interstitial fluid pressure p for
y/b,=0.05, 0.55 and 0.95 in layer 1. It is observed that the
interstitial fluid pressurization could contribute more than
80% of the total applied load at the contact surface.

Figure 6 displays the tangential traction #(x) for
Vi/V,=0.95 and 0.90 in layer 1. It is observed that the
magnitude of the tangential traction increases as the
difference of rolling velocity between the two cartilage
layers enlarges. Besides, the effect of the difference on the
tangential traction becomes larger as the coefficient of
friction increases.
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Fig. 6. Tangential traction #,(x) for V,/V,=0.95 and 0.90 in layer 1
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